Home > Engineering >X Robots

Engineering > Robots


The TETRIX® + myRIO Control Board Adapter is designed to easily connect TETRIX Motor Controllers to the NI myRIO. It also contains a built-in logic-level shifting circuit, Grove sensor-family connections, a Gnd expansion port, a 34-pin myRIO I/O expansion port, a +3.3 V expansion port, and a +5 V expansion port.


Competing in the World Robot Olympiad's university bowling game? Then check out this new TETRIX® set designed just for the event's competitors! With the TETRIX WRO Set, we are delivering into your hands a well-rounded selection of components for building an autonomous robot that can successfully complete the WRO bowling game. These parts enable your team to apply its creativity and engineering know-how to tackle the challenge.

The TETRIX WRO Competition Base Set comes with:

  • 130 aluminum TETRIX MAX structural components.
  • 2 MAX Wheels and a set of Omni Wheels with a variety of axles, bushings, and hubs.
  • 15 total gears and a Linear Slide Pack.
  • 2 DC motors; a CR servo; a standard servo;, motor encoders; and an assortment of cables, brackets, and more.
  • HiTechnic Servo Controller, DC Motor Controller, and On/Off Switch.
  • Hundreds of screws and kep nuts plus other needed hardware.
  • 12-volt, 3,000 mAh battery pack, charger, and mounts.
  • Assorted small tools and fasteners and storage bin.


B-Bot demonstrates something innate to all humans but learned by many robot designers: bipedal motion. Just assemble the kit parts and this little guy will be cruising around in your classroom in no time – and using hydraulic power, no less.

Includes laser-cut hardboard pieces, syringes and tubing, and other needed hardware. Requires a Phillips screwdriver, white or CA glue, and clay, sold separately.


Take hydraulics to the next level in your classroom. Using a system of syringes, tubing, and three-way valves, you can build the Can Crusher, a mini version of a four-post hydraulic press similar to those found in manufacturing and testing facilities around the world.

Creating a mechanical advantage of 14:1 with fluid running through tubing and syringes, it easily crushes aluminum cans, paper cups, and other items. Two tubes – one to take up the water and the other to return it – rest in a cup of water. Pumping the small syringe forces fluid through the tubes and to the four larger syringes, creating a lot of force from a little input.

Assembly required.


This crawling critter isn’t a pest – it’s a fun kit that utilizes mechanics and water power to crawl across the floor or other flat surfaces. After it is built, just push the plunger back and forth to move the C-Bot forward. Great for demonstrating Newton’s third law of motion, basic hydraulics, and other concepts.

Laser-cut parts glue together to create subassemblies, which are then screwed together. Requires white glue, cool-melt glue gun and glue, small screwdriver (all sold separately), and water.


Using two syringes, a gear train, and special bearings, this hydraulic-powered car moves forward even when you pull back on the syringe! A fun way to demonstrate the conversion from linear motion to rotary motion.

Includes the laser-cut hardboard pieces, wheels and axles, syringes and tubing, friction bands, and other hardware needed to build one car. Requires a Phillips screwdriver, sold separately.


Building this Gator opens students’ eyes as to how linear motion can be converted into rotary motion via a drive train and one-way bearings. And the built kit makes a fun demonstration of the power of simple hydraulics.

Includes laser-cut hardboard pieces, syringes and tubing, and other needed hardware. Requires a Phillips screwdriver, sold separately.


This pack makes it easy to keep your science lab closet stocked. Pack includes 25 each of the Motor 280 and the Pitsco Gear Font. Perfect for all those solar cars, wind generators, and other small science projects your students create!